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Introduction Examples

Artificial Neural Networks - Deep Networks

Deep networks learn hierarchical basis functions - efficient encodings

Image: Yann LeCunn yann.lecun.com
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Introduction Topics

Overview

Machine learning: Problem classification areas.

Uncertainty Quantification for engineering: Combining
probabilistic techniques with numerical methods.

Deep Artificial Neural Networks: Powerful parametric optimisation
methods. Background material.

Adaptive Basis Element Free Galerkin: Adaptive Basis Element
Free Galerkin algorithm derived by considering Probabilistic Numerical
Methods, the Expectation-Maximisation algorithm, Sparse-Coding,
Gaussian Processes and Bayesian Linear Regression.

Future directions: Variational Bayesian Inference and Generative
Models.
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Introduction Learning terminology

Supervised learning

Given: input/output pairs - x and f (x).

Classification: f (x) is a discrete class vector, i.e. in N.

Support Vector Machines (SVM)
Artificial Neural Networks
ANN Energy based models

Regression: Learn weights for function hθ(x) ∈ RN

Kernel Methods/Support Vector Regression (SVR)
Artificial Neural Networks
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Introduction Learning terminology

Unsupervised learning

Given: data set x ∈ X

Task: learn efficient representations of the data

Examples:

Principle Components Analysis (PCA)
Clustering
Anomaly detection
Restricted Boltzmann Machines
Autoencoders
Variational Autoencoders (VAE)
Generative Adversarial Networks (GANs)
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Introduction Learning terminology

Descriminative and Generative Models for classification

Given:

Inputs - x
Labels - y

Generative models:

Build model P(x , y)
Use Bayes rule to calculate P(y |x) and pick maximum likelihood y
Example - Näıve Bayes

Descriminative models:

Learn P(y |x) directly
Equivalent - learn map y = f (x)
Logistic regression

Good reference: Ng & Jordan, 2001,
https://tinyurl.com/y72r2hsk
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Introduction Uncertainty Quantification

Uncertainty Quantification - From a learning perspective

Given:

P(x) - input data distribution
P(y |x) - map from inputs to outputs

Tasks:

Learn output distribution P(y)
Learn QoI A = EP(y) [a(y)]

Issues:

P(x) - usually ok, KL-Expansion or etc
P(y |x) - very complicated (e.g. finite element output)
Output distribution P(y) has no obvious nice analytic form

Challenges:

Solving high dimensional integrals
Encoding complicated distributions
Computationally expensive sampling/mapping
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Artificial Neural Networks Overview

Artificial Neural Networks - parametric function
approximation

Goal: Given a function f (x), and error functional L [h(x), f (x)] find closest
approximation from hypothesis space H.

h∗(x) = argmin
h∈H

E [h(x), f (x)]

Deep ANN’s compute a series of activation functions, σ(◦) that depend on
the weighted sum of inputs to a layer. For an N layer network with input
vector x ∈ RN and weight matrices θi ∈ Rnm, h(x) is given by:

a0 = x

ai = σi (θiai−1)

hθ(x) = aN

What is H? The space of all possible Neural Network weights.
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Artificial Neural Networks Overview

Information flows - Feedforward and Recurrent nets
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Feedforward architecture
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Recurrent architecture

Information stored in the weights. Research area: use external memory
e.g. Neural Turing Machines and Differentiable Neural Computers.
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Artificial Neural Networks Overview

Why did Artificial Neural Networks suddenly become
popular?

What went wrong?

Early promise of ANNs was not realised, leading to community
resistance.

Computers too weak.

Vanishing gradient problem prevented training of deep networks.

Why is deep learning now so successful?

Computers can now hold big models (many weights).

Networks can be trained more quickly (GPUs).

Developments in activation functions have helped to resolve the
vanishing gradient problem.

Adaptive training algorithms (improving Stochastic Gradient
Descent).

Benchmark gains led to huge development surge in last ∼5 years.
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Artificial Neural Networks Overview

Artificial Neural Networks - general architecture

ANNs are graphs with information flows
Neural Network Zoo: http://www.asimovinstitute.org/neural-network-zoo/

A small sample from the full set!
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Artificial Neural Networks Overview

Artificial Neural Networks - optimisation

The loss functional J(θ) = L [hθ(x), f (x)] defines a surface on H.

Typically Artificial Neural Networks learn local optima on H by
Stochastic Gradient Descent.

Optimisation by Stochastic Gradient Descent:

θi+1 = θi − α∇θJ(θi )

Backpropagation uses the chain rule to calculate the local change in
ANN weights to minimise the error:

∇θJ(θi )

Numerically, errors are calculated for training data sets (know input,
x , and output, f (x), pairs).
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Artificial Neural Networks Backpropagation

Artificial Neural Networks - automatic differentiation

Models become complicated. Use automatic differentiation!
Automatic differentiation:

Use dual number representation of operations:

x + x ′ε

where (basic operations):

(
x + x ′ε

)
+
(
y + y ′ε

)
=
(
x + y + (x ′ + y ′)

)
ε

(
x + x ′ε

)
×
(
y + y ′ε

)
= xy + xy ′ε+ yx ′ε+ x ′y ′ε2 = xy + (xy ′ + yx ′)ε

Allows polynomials to be defined

Can define derivatives for standard functions e.g. exp, sin etc.

Extension to multivariate models, other operations

See: Rall, 1981, Automatic Differentiation: Techniques and
Applications, doi:10.1007/3-540-10861-0
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Artificial Neural Networks Backpropagation

Artificial Neural Networks - automatic differentiation

Write x + x ′ε := 〈x , x ′〉
g(〈x , x ′〉, 〈y , y ′〉) = 〈g(x , y), ∂x(g(x , y))x ′ + ∂y (g(x , y))y ′〉

〈x , x ′〉+ 〈y , y ′〉 = 〈x + y , x ′ + y ′〉
〈x , x ′〉 − 〈y , y ′〉 = 〈x − y , x ′ − y ′〉
〈x , x ′〉 × 〈y , y ′〉 = 〈xy , x ′y + y ′x〉

〈x , x ′〉 × 〈y , y ′〉 = 〈x
y
,
x ′y − y ′x

y2
〉

〈x , x ′〉/〈y , y ′〉 = 〈x
y
,
x ′y − y ′x

y2
〉 (y 6= 0)

sin〈x , x ′〉 = 〈sin(x), x ′ cos(x)〉
cos〈x , x ′〉 = 〈cos(x),−x ′ sin(x)〉
exp〈x , x ′〉 = 〈exp(x),−x ′ exp(x)〉

log〈x , x ′〉 = 〈log(x),
x ′

x
〉 (x > 0)

〈x , x ′〉k = 〈xk , kxk−1x ′〉 (x 6= 0)

and so on...
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Artificial Neural Networks Backpropagation

Artificial Neural Networks - reverse mode AD

Consider:

y = f (x) = f (g(x))

then:

dy

dx
=

df

dg

dg

dx

For composed functions:

y = f (x ;w)

dy

dx
=

df

dw1

dw1

dx
=

(
df

dw2

dw2

dw1

)
dw1

dx
=

((
df

dw3

dw3

dw2

)
dw2

dw1

)
dw1

dx
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Artificial Neural Networks Backpropagation

Artificial Neural Networks - Jacobian chain rule

In higher dimensions:

f : Rm −→ Rk

g : Rn −→ Rm

x ∈ Rn

Jacobian chain rule in index form:

∂(f1, · · · , fk)

∂(x1, · · · , xn)
=

∂(f1, · · · , fk)

∂(g1, · · · , gm)

∂(g1, · · · , gm)

∂(x1, · · · , xn)

∂(f1, · · · , fk)

∂xi
=

∂(f1, · · · , fk)

∂(g1, · · · , gm)

∂(g1, · · · , gm)

∂xi

∂(f1, · · · , fk)

∂xi
=

m∑

l=1

∂(f1, · · · , fk)

∂gl

∂gl
∂xi
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Artificial Neural Networks Backpropagation

Artificial Neural Networks - Jacobian chain rule

In higher dimensions:

f : Rm −→ Rk

g : Rn −→ Rm

x ∈ Rn

Vectorised computations - use Jacobian matrices

for p ∈ g(x) f (g) = f (p) + Jf (p)(g(x)− p) + · · ·

Jf =




∂f1
∂g1

· · · ∂f1
∂gm

...
. . .

...
∂fk
∂g1

· · · ∂fk
∂gm




Composition of Jacobians:

Jf ◦g (x) = Jf (g(a))Jg (x) = Jf (g(x))Jg (x)
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Artificial Neural Networks Layerwise backprop

Artificial Neural Networks - backpropagation

Backpropagation - use the chain rule to calculate SGD derivatves.

Requires: ANN functions are differentiable

Layered deep neural network structure has a convenient form for
backprop

Layer l

al+1 = σl(a
l) δl+1 = ∂J

∂al+1

∂J
∂θ =

∑
j δ

l+1
j

∂al+1

∂θ

al δl =
∑
j δ

l+1
j

∂al+1

∂al
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Artificial Neural Networks Layerwise backprop

Artificial Neural Networks - backpropagation

Let a1 = x be the input vector.
Consider the layerwise activations, al , and activation functions, σl(◦):

al = σl−1(al−1) = σl−1

(
m∑

i=0

Wijai

)

h(x ; θ) = aM−1

Treat the loss at final layer as an activation:

aM = J(θ)[aM−1]

∇θJ(θ) ≈ 1

n

n∑

i=1

∇θL [hθ(xi ), yi ]

Need to pass these errors backwards through the network!
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Artificial Neural Networks Layerwise backprop

Artificial Neural Networks - backpropagation

Let δli be the error derivative at node i in layer l :

δli =
∂J

∂ali

δli =
m∑

j=0

∂J

∂al+1
j

∂al+1
j

∂ali

δli =
m∑

j=0

δl+1
j

∂al+1
j

∂ali

At the final layer (reverse mode AD...):

δMi =
∂J

∂aMi
=
∂aMi
∂aMi

= 1
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Artificial Neural Networks Layerwise backprop

Artificial Neural Networks - backpropagation

Use backwards errors, δ, to find gradient of weights, θ, with respect to the
loss function:

al+1
j = σl

(
m∑

i=0

θlija
l
i

)

So that at layer l , the gradient of the loss with respect to the weights is:

∇θl J =
∂J

∂θl

[
al+1(θl)

]

∇θl J =
m∑

j=0

∂J

∂al+1
j

∂al+1
j

∂θl

∇θl J =
m∑

j=0

δl+1
j

∂al+1
j

∂θl
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Artificial Neural Networks Layerwise backprop

Artificial Neural Networks - backpropagation

So at each layer we need:

Weights, θ

Activation functions σ

Backwards error gradient (reverse accumulated Jacobians through
layer activations):

δli =
∂J

∂ali
=

m∑

j=0

∂J

∂al+1
j

∂al+1
j

∂ali
=

m∑

j=0

δl+1
j

∂al+1
j

∂ali

More details:

Bishop, 1994, Neural networks and their applications

Oxford: Machine Learning 2014-2015 tinyurl.com/mcwofzr
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Artificial Neural Networks Activation functions and gradients

Artificial Neural Networks - activation functions

−4 −2 0 2 4
−2

−1

0

1

2

x

σ
(x
)

Sigmoid
Tanh
ReLU
ELU

Sigmoid: σ(x) =
1

1 + exp(−x)

ReLU: σ(x) = max(0, x)

Tanh: σ(x) =
exp(x)− exp(−x)

exp(x) + exp(−x)

ELU: σ(x) =

{
x if x ≥ 0
a (exp(x)− 1) otherwise
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Artificial Neural Networks Activation functions and gradients

Artificial Neural Networks - vanishing gradients

Problems:

Gradients accumulate multiplicatively

Tiny error gradients become increasingly small: weights cannot be
updated in response to errors

In recurrent networks: large error gradients: weights become so large
that SGD fails (oscillations prevent convergence).

What to do:

Sigmoid units have ≈zero gradients for high saturation

Rectified units: linear error gradients

Alternative approach: centre activations near 0 for a sigmoid - lead to
Batch Normalisation.

ELU’s - Improved ReLU units: arxiv.org/abs/1511.07289

Positive activation on an ELU acts like a ReLU

Negative part on ELU allows information suppression - forces centring
without complicated Batch Normalisation
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Artificial Neural Networks Activation functions and gradients

Long short-term memory (LSTM)

LSTMs help to resolve vanishing
gradient problem for BPTT.

Image: arxiv.org/abs/1303.5778

See: arxiv.org/abs/1503.04069

Sigmoid function gates: value 0 to 1

Cell represents internal memory
state

Input gate: Decides if information is
relevant to cell. Decides whether or
not to save incoming information.

Forget gate: Discards cell state if
required.

Output gate: Works as a focus
mechanism. Decides if current cell
state is useful to outputs. Decides if
long-term useful information is/is
not useful immediately.
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Artificial Neural Networks Examples

Artificial Neural Networks - Deep Networks

Deep networks learn hierarchical basis functions - efficient encodings

Image: Yann LeCunn yann.lecun.com
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Artificial Neural Networks Examples

Artificial Neural Networks - RNN applications

Image captioning by sequential attention filtering

Image: arxiv.org/abs/1502.03044
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Artificial Neural Networks Software

Artificial Neural Networks - software and tools

Use one of the many very good free software packages!
Getting started: Keras - https://keras.io/

Simplified interface to Tensorflow and Theano (automatic
differentiation frameworks)
Many examples:
https://github.com/fchollet/keras/tree/master/examples

More advanced: Tensorflow - https://www.tensorflow.org/
Use specifies computation graph in terms of tensor operations

Features:
Nice Python interfaces (can be a problem for older Automatic
Differentiation frameworks)
Sophisticated SGD variants (e.g. ADAM)
Activation functions and operations eg. ELU, dropout,
BatchNormalisation etc etc.
New tricks are developed frequently. Literature moves rapidly. Good
packages respond quickly.
Convolutional network models (advice, can implement with sparse
matrix multiplication and local weight connectivity...)
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Adaptive basis Element Free Galerkin Overview

Case study: Adaptive Basis Element Free Galerkin

Original inspiration: Consider convergence of Series Expansion
Stochastic FEM. Convergence rate depends on selected output basis.

Question: How to improve the convergence rate?

Advice: “Choose a better basis”

But how?

Idea: Use Probabilistic Numerical Methods to derive an adaptive
basis finite element scheme.

Represent PDE solution function with an ANN.

Need to derive a ANN loss function.

Can derive a basis optimisation objective via information theory.

Test case: Poisson equation.

Source: DKE Green, PhD thesis 2017, §7, Probabilistic analysis for
computational mechanics with applications in Civil Engineering
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Adaptive basis Element Free Galerkin PDE details

PDE - energy functionals

Consider PDE with energy functional

I (u) =
1

2
〈Lu, u〉 − 〈f , u〉

Can derive PDE (Euler-Lagrange equations):

Lu = f

Example for numerical case study, Poisson equation:

∇2u(x) = f (x)

Boundary conditions by Lagrange multipliers: Consider energy functional
to incorporate constraints Au = c :

L(u, λ) = I (u)− 〈λ,Au(x)− c(x)〉
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Adaptive basis Element Free Galerkin PDE details

Element Free Galerkin

Consider solutions u and v from the Sobolev function space H.
Weak solutions: Consider error G (u) = Lu − f . If, for every v ∈ H, the
(Sobolev) inner product error functional satisfies:

〈G (u), v〉 = 0

then u ∈ H is said to be a weak solution.
Disretisation: Representation of solution function in terms of arbitrary
function basis expansion:

u(x) = U iφi (x)

Substitute into energy functional, find discrete Euler-Lagrange equations
to find discretised weak form solution.
Lots of standard algebra yields bordered Hessian:




∂2L
∂u2

∂2L
∂u∂λ(

∂2L
∂u∂λ

)T
∂2L
∂λ2



[
U
Λ

]
=

[
K AT

A B

] [
U
Λ

]
=

[
F
C

]
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Adaptive basis Element Free Galerkin ANN and PDE

ANN Parameterisation of boundary value PDE solution

Represent solution as weighted sum of basis functions:

uθ(x) =
∑

i

WiΦi ,θ(x)

where:

x - spatial input location

θ - notational representation of ANN weights

uθ(x) - ANN parameterised solution function

Wi - basis function coefficient weights

Φi ,θ(x) - ANN parametrised basis functions
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Adaptive basis Element Free Galerkin ANN and PDE

End result summary - adaptive solution algorithm

ANN solution and basis representation (discretised weak form)

uθ(x) =
∑

i

WiΦi ,θ(x)

Two phase iterative algorithm:

1: use your favourite optimisation technique to find Wi given Φi,θ

2: Train the ANN using the regularised training objective below.

Expectation-Maximisation Neural Network regularised training objective

Using Laplace priors and techniques similar to sparse-coding can derive:

J(θ) = −Q(θ|θi ) ≈ ‖uθ(x)−W iΦθ(x)‖2
2 + λW ‖W i+1‖2

2 + λΦ‖Φθ(x)‖1
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Adaptive basis Element Free Galerkin EM Algorithm

The Expectation-Maximisation algorithm

EM gives (locally optimal) MLE and MAP estimates.

Goal: Find the maximum likelihood parameters for L(θ;X ) = P(X |θ)

To simplify, introduce latent variable Z such that:

P(X |θ) =

∫

z∈Z
P(X , z |θ)dz

Two stage optimsation. On iteration i :
Expectation step: Find auxiliary function:

Q(θ|θi ) =

∫

z

P(z = Z |X , θi ) logP(X , z = Z , θ)dz

Maximisation step: find the values of θi+1 to maximise the auxiliary
function:

θi+1 = argmax
θ

Q(θ|θi )

See Bishop, 2006, Pattern Recognition and Machine Learning.
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Adaptive basis Element Free Galerkin Sparse coding

Sparse coding

Learning over-complete basis functions - improve generalisation
performance.

Image: tinyurl.com/y9wymk3g
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Adaptive basis Element Free Galerkin Sparse coding

Sparse coding

Technique for learning a ‘dictionary’ (over-complete basis) representations.
Consider:

y(x) =
N∑

i=1

Wiφi (x)

Using KL divergence and Laplace prior can derive:

argmin
W ,φ

[
‖y(x)−Wφ‖2

2 + λ‖W ‖1

]

such that:
‖φ‖2

2 ≤ C

Two-norm feature constraint prevents failure mode where sparsity
penalty, λ‖W ‖1, disappears by setting W very small and φ very large.
Two step optimsation:

Update W given φ
Update φ given W
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Adaptive basis Element Free Galerkin Probabilistic Numerical Methods

Probabilistic Numerical Methods

Treat numerical methods as inference problems.

Even deterministic problems have solutions can be framed as inference
problems: the solution is unknown to the subjective observer.

Overview: Hennig, Osborne, Girolami, 2015, Probabilistic numerics
and uncertainty in computations, doi: 10.1098/rspa.2015.0142.

Neat example: non-parametric derivation of trapezoidal rule from
Bayes rule for Gaussian Processes (update of mean and covariance
function).

David K. E. Green (UNSW/ATI) Deep Networks UQ TUBs - December 2017 37 / 58



Adaptive basis Element Free Galerkin Probabilistic Numerical Methods

Probabilistic interpretation of Element Free Galerkin

For linear PDE Lu = f (Dirichlet BC’s) consider mean field form of PDE
solution:

P(uθ) =
1

Z
e−β[

∫
Ω[Luθ(x)−f (x)]2dx+

∫
∂Ω[uθ(x)−c(x)]2dx]

P(uθ) =
1

Z

∞∏

i=1

e−β[Luθ(xi )−f (xi )]2

︸ ︷︷ ︸
Main spatial term

∞∏

j=1

e−β[uθ(xj )−c(xj )]
2

︸ ︷︷ ︸
Boundary term

Introduce Galerkin method by considering:

P(uθ) =

∫

W

∫

Φ
P(u|W ,Φ)P(W |Φ)P(Φ)

Substitute P(u|W ,Φ) for a Gaussian Process and P(W |Φ) for the
discretised Galerkin error Gibbs measure.
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Adaptive basis Element Free Galerkin Probabilistic Galerkin

Probabilistic interpretation of Element Free Galerkin

Need terms for:

P(uθ) =

∫

W

∫

Φ
P(u|W ,Φ)P(W |Φ)P(Φ)

Consider representation of solution function in terms of a Bayesian Linear
Regression/Gaussian Process (weight space representation) of PDE
solution:

P(uθ|W ,Φθ,X ) ∼
∏

i

N
(
WΦθ(xi ), σ

2
)

Solution of energy functional L(u, λ) = I (u)− 〈λ, u − c〉 yields equations
with solutions U = (W , λ) so KU = F . Represent solution in terms of
Gibbs measure:

P(W |Φθ) =
1

Z
exp(−‖KU − F‖2

2)

Will be able to treat P(Φ) as a Laplace prior to simplify marginalisation
integrals by introducing sparsity over basis function space.

David K. E. Green (UNSW/ATI) Deep Networks UQ TUBs - December 2017 39 / 58



Adaptive basis Element Free Galerkin EM and EFG

EM for Element Free Galerkin

Treating solutions as probability measures, error in ANN encoding of
solution is minimised when DKL(P(u)‖P(u|θ)) = 0 so:

DKL(P(u)‖P(u|θ)) =

∫
P(u) log

(
P(u)

P(u|θ)

)
du

DKL(P(u)‖P(u|θ)) =

∫
P(u) log (P(u)) du −

∫
P(u) log (P(u|θ)) du

So then:

−
∫

P(u) log (P(u|θ)) ≥ 0

So minimum DKL(P(u)‖P(u|θ)) when logP(u|θ) is a maximum. This
suggests EM algorithm.
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Adaptive basis Element Free Galerkin EM and EFG

EM for Element Free Galerkin

Introduce latent variable model:

P(uθ) =

∫

W

∫

Φ
P(uθ,w , φ)dwdφ

Let:

P(W ,Φθ) = P(W ,Φ|θ)

To simplify (cheat) - assume independence:

P(W ,Φθ|u) = P(W ,Φθ)

This leads to the auxiliary function:

Q(θ|θi ) =

∫

W

∫

Φ
P(w , φ|θi+1) logP(uθ,W ,Φθ)dφdw

Q(θ|θi ) =

∫

W

∫

Φ
P(w , φ|θi+1) logP(uθ|W ,Φθ)P(W |Φθ)P(Φθ)dφdw
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Adaptive basis Element Free Galerkin EM and EFG

Sparse coding simplification

Want to recover training objective for Maximisation step that is similar to
sparse coding mixed L2 and L1 regularisation terms.
Goal is to find ANN minimisation objective J(θ):

J(θ) = −Q(θ|θi ) =

∫

W

∫

Φ

P(w , φ|θi+1) logP(uθ|W ,Φθ)P(W |Φθ)P(Φθ)dφdw

First, set basis functions to L1 regularisation by Laplace prior:

J(θ) = −
∫

W
P(w , φ̂|θi+1) logP(uθ|W , φ̂)P(W |φ̂)P(φ̂)dw
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Adaptive basis Element Free Galerkin EM and EFG

Introduce the Galerkin Gibbs measure term

To further simplify the training objective, introduce the probabilistic
interpretation of the Galerkin method:

P(W |Φ, θi ) =
1

Z
exp(−β‖KU − F‖2

2)

By Bayesian Linear Regression, the Ordinary Least Squares solution for
KW = F corresponds to the Maximum Likelihood Estimate for
P(W |Φ, θ), denote by Ŵ .

Assume a peaked Gaussian prior on W centred at Ŵ to induce an L2

regularisation term for J(θ):

J(θ) = −P(ŵ , φ̂|θi+1) logP(uθ|ŵ , φ̂)P(ŵ |φ̂)P(φ̂)

J(θ) = − logP(uθ|ŵ , φ̂)P(ŵ |φ̂)P(φ̂)
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Adaptive basis Element Free Galerkin EM and EFG

Introduce the Galerkin Gibbs measure term

Expanding to recover training objective:

logP(uθ|ŵ , φ̂)P(ŵ |φ̂)P(φ̂)

Expectation-Maximisation Neural Network regularised training objective

Using Laplace priors and techniques similar to sparse-coding can derive:

J(θ) = −Q(θ|θi ) ≈ ‖uθ(x)−W iΦθ(x)‖2
2 + λW ‖W i+1‖2

2 + λΦ‖Φθ(x)‖1

where:

λW : Weight regularisation hyperparameter

λΦ: Basis sparsity regularisation hyperparameter

Galerkin method follows from expression of PDE solution as
weight-space Gaussian process (Bayesian linear regression).

Galerkin solution completes latent variable model with P(W |φ).
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Adaptive basis Element Free Galerkin Numerical example

Numerical test case: 1D Poisson equation

Deterministic one-dimensional Poisson equation with fixed Dirichlet
boundary conditions:

∇2u(x) = f (x) x ∈ Ω

u(x) = c(x) x ∈ ∂Ω

f (x) = −1

c(x) = 0

Ω = [0, 1]

Simple solution:

u(x) = −1

2
x2 +

1

2
x
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Adaptive basis Element Free Galerkin Numerical example

ANN Design

Architecture:

Layer 0: 1 dimensional input position : x ∈ Ω

Layer 1: 50 ELU units

Layer 2: 50 ELU units

Layer 3: 50 Tanh units : Φθ(x)

Layer 4: 10 Linear units : WΦθ(x)

Layer 5: 1 dimensional output : u(x) = WΦθ(x)

Design considerations:

ELU layers for good performance with depth

Tanh Layer to squash basis functions to range [0, 1]

Linear weights (no bias) to represent KW = F
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Adaptive basis Element Free Galerkin Numerical example

Trained solution

0 0.2 0.4 0.6 0.8 1
0

5 · 10−2

0.1

0.15

x

u
(x
)

Iteration 1
Iteration 2
Iteration 4
Iteration 6
Iteration 8
Iteration 10
Analytic solution

Solution converges rapidly.
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Adaptive basis Element Free Galerkin Numerical example

Learnt basis functions

0 0.2 0.4 0.6 0.8 1
−1 · 10−2

−5 · 10−3

0

5 · 10−3

1 · 10−2

x

φ
(x
)

Basis 1
Basis 2
Basis 3
Basis 4
Basis 5
Basis 6
Basis 7
Basis 8
Basis 9
Basis 10

Basis function irregularities due to Monte Carlo integration used to
evaluate functional inner products for weak-form projections e.g.

Kij = 〈∇φi ,∇φj〉 etc. etc.
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Adaptive basis Element Free Galerkin Numerical example

Error reduction

0 2 4 6 8 10

10−6

10−5

10−4

10−3

10−2

Iteration

lo
g(
E
rr
or
)

Rapid convergence with iteration. EFG inner products evaluated by Monte
Carlo - source of error oscillation about MCS accuracy.
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Adaptive basis Element Free Galerkin Conclusions

Conclusions

Parametric approach combining probabilistic numerics and Galerkin
methods yields Gradient Descent form of basis function adaption.

Probabilistic interpretation - Galerkin method provides P(W |Φ) term
for Gaussian process representation of P(u).

Deterministic inputs converge to single basis equal to PDE solution
plus noise terms.

More interesting basis functions would be found for probabilistic
inputs. For inputs x ∈ X and outputs y ∈ Y :

P(y) =

∫

X
P(y |x)P(x)dx

Related to Probabilistic Principle Components Analysis (PPCA).

Long term: automating numerical methods.
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Conclusions Future directions

Future directions - Generative models - VAE

Autoencoding Variational Bayes - arxiv.org/abs/1312.6114

Image: https://tinyurl.com/yax9f64r

ANN density estimation
and simulation technique.
Samples from latent
space:

P(X ) =

∫

Z
P(X |z , θ)P(z)dz

Want to sample from
latent space such that
generated outputs match
input distribution.
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Conclusions Details

VAE - Decoder idea

Latent space representation:
Gaussian with specified mean and

standard deviation.

z ∼ N (µ, σ2)

Decoder: Arbitrary map to new
random variable

X = g(z) =
z

10
+

z

‖z‖

Images: arxiv.org/abs/1606.05908
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Conclusions Details

VAE - Training objective

Assume latent representation:

P(z) = N (0, I)

Then decoder network is:

P(X ) =

∫

Z
P(X |z , θ)P(z)dz

P(X |z , θ) = N (X |f (z , θ), σ2I)

Improve performance by learning encoder network:

P(z |X , θ) = N (µ(X ), σ(X ))

Regularisation: Force encoder network to match P(z) = N (0, I)
Training objective:

J(θ) = Ez∼Q [logP(X |z)]︸ ︷︷ ︸
reconstruction error

−D [Q(z |X )‖P(z)]︸ ︷︷ ︸
regulariser
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Conclusions Details

Future directions - Generative models

Key paper: arxiv.org/abs/1406.2661

Generator and discriminator networks are in a zero-sum game,
solution converges to a Nash equilibrium.

Image: https://tinyurl.com/ycf3rthw
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Conclusions Details

Future directions - Generative models

All sorts of cool applications

Nice example - image synthesis from text (image source):
arxiv.org/abs/1612.03242v1
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Conclusions Details

Thank you!
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Slide appendix - Sparse coding Probabilistic interpretation

Sparse coding - probabilistic interpretation

See: Olshausen, Field, 1996, Natural image statistics and efficient coding,
doi: 10.10188/0954-898x/7/2/014

See: Stanford UFLDL - tinyurl.com/y7n6alv5

Technique for learning ‘dictionary’ (over-complete basis) representations:

y(x) =
N∑

i=1

Wiφi (x) + Gaussian noise

P(y(x)|W , θ) =
1

Z
exp

(
−(y(x)−∑N

i=1 Wiφi (x))2

2σ2

)

Find basis such that model P(y |θ) is as close as possible to input data
distribution, P∗(y):

DKL(P∗(y)‖P(y |θ)) =

∫
P∗(y) log

(
P∗(y)

P(y |θ)

)

Minimising DKL(P∗(y)‖P(y |θ)) equivalent to maximising logP(y |θ).
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Slide appendix - Sparse coding Probabilistic interpretation

Sparse coding - probabilistic interpretation

Assume independence prior on W so P(W ) =
∏

i P(Wi )
Want:

P(y(x)|φ) =

∫
P(y(x)|W , φ)P(W )dw

Consider Laplace priors to force peaked distribution on W :

P(wi ) ∝ exp(−β|wi |) for large β

then, let max W = W ∗:

P(y(x)|φ) =

∫
P(y(x)|W , φ)P(W )dw = P(y(x)|φ,W ∗)

Then, our goal is to find:

φ∗ = argmax
φ

(P(y(x)|φ,W ∗))
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Slide appendix - Sparse coding Probabilistic interpretation

Sparse coding - probabilistic interpretation

Define P(y(x),W |φ) in terms of (Gaussian process) energy function:

H(y(x),W |φ) = − logP(y(x)|φ,W )P(W )

H(y(x),W |φ) =
m∑

j=1

‖y(x j)−
k∑

i=1

w j
i φi‖2

2 + λ‖W ‖1

Two-norm constraint prevents optimisation failure mode where weights
scale down and basis features scale up.
Minimum energy maximises likelihood:

J(θ) = H(y(x),W |φ) =
m∑

j=1

‖y(x j)−
k∑

i=1

w j
i φi‖2

2 + λ‖W ‖1
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