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Introduction Topics

Overview

Research goal: Design techniques for safer and more efficient
infrastructure

How: Improving probabilistic numerical analysis (specifically for rare
event simulation)

Contents:

Risk and rare event estimation is important in Civil Engineering

Challenges in probabilistic numerical analysis

Advances made due to this research
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Introduction Consequences

Consequences of failures in Civil Engineering

Typical risk profile: low probability, high consequence

I-35 Bridge Collapse - 2007

13 fatalities, 100 injured
∼$360 million in damages

CNN 2008, url:
http://tinyurl.com/jxa9fmw

Teton Dam failure - 1976

11 fatalities
$2 billion in damages

L. Thomson, 1976, url:
http://tinyurl.com/jnj6nnq
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Introduction Risk

Risks in Civil Engineering and acceptable risk

Working definition of risk

Risk = (Probability of an event) ×
(consequences of the event).

Risk in Civil Engineering

Unacceptable performance carries
severe consequences. Potential for
loss of life and large damage cost.
This necessitates that the probability
of unacceptable performance is small.

Image: Safety targets for societal
risks in The Netherlands

From Faber & Stewart (2003).
doi:10.1016/S0951-8320(03)00027-9
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Uncertainty analysis Uncertainty propagation

Uncertainty propagation in numerical models
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Uncertainty analysis Deterministic numerical models

Deterministic Mechanical Models

Modern deterministic numerical mechanical models are
computationally demanding!

Probabilistic analysis needs to handle this complexity.

Example: Multiphase Finite Volume Model

Moderately computationally demanding for a single analysis
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Uncertainty analysis Probabilistic numerical models

Probabilistic Mechanical Models

Probabilistic analysis is even more computationally demanding than
deterministic numerical analysis!

Have to analyse a range of inputs and then characterise a possible
range of outputs to a model

Simple probabilistic models fail to model input space.

For many models in Civil Engineering spatial variability plays a
significant role in constraining the possible output space.

To accurately pin down output probabilities (and therefore risks)
you need to account for spatial variability in material properties
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Uncertainty analysis Random fields

Capturing spatial variability with random fields

Random field simulation - one sample shown below

Point variability: Each point has values given by some distribution
Spatial variability: Points nearby are strongly correlated, points at a
distance are not correlated.
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Uncertainty analysis Random field and finite elements

Combining numerical models and random fields

Example: FEM building footing model on soil (nonlinear stress/strain)

Probabilistic models can capture asymmetric response under load
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Uncertainty analysis Contribution: efficient random field simulation

An early contribution of this work

An efficient random field simulator

Rigorous accuracy/error bounds on the computation.

Parallel, high performance computing.

For experts: handles numerically singular covariance matrices while
retaining speed of Cholesky decomposition over eigenvalue
decomposition for positive definite covariance functions.

Publication: Green, Douglas and Mostyn (2015) - The simulation and
discretisation of random fields for probabilistic finite element analysis of
soils using meshes of arbitrary triangular elements, Computers and
Geotechnics. doi:10.1016/j.compgeo.2015.04.004
Example application in paper: Probabilistic finite element analysis for
slope stability.
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Rare event analysis Existing techniques and issues

Existing techniques not well suited to industry applications

Rare event analysis critical in Civil Engineering

Many of the interesting problems in practice involve rare event
estimation.

Rare event modelling - hard problem.

Existing techniques not well suited to this problem

Spectral methods (series expansion methods) - good for mean
response. Can only handle simple physical models.

Monte Carlo Simulation - Good for mean, realistic models, high
computational resource demands.

Subset Simulation - Markov Chain Monte Carlo sampling. Works well
in theory but has problems for complex physical models.

David K. E. Green (UNSW) Probabilistic analysis PGRS - 2016 11 / 19



Rare event analysis Subset simulation - issues

Improving the usability of probabilistic analysis for real
problems

Subset Simulation - Problems

Computational complexity of technique is not well understood.

Make the best choice of Markov Chain Sampler.

Improve mathematical methods - existing error bound techniques for
Subset Simulation are not efficient. Current technique requires
problem to be analysed several times!

Computationally very demanding. Sampling methods require repeated
solutions of computationally demanding deterministic problems.

David K. E. Green (UNSW) Probabilistic analysis PGRS - 2016 12 / 19



Rare event analysis Subset simulation - improvements

Recent work on improvements to Subset Simulation

Some recently presented results in probabilistic analysis:

Several improvements to Subset Simulation for nonlinear finite
element analysis.
Presented in April 2016 at SIAMUQ2016.
Conference: Society and Institute for Applied Mathematics (SIAM)
Conference on Uncertainty Quantification in Lausanne, Switzerland.
Journal article currently under peer review.

New results presented at UQ2016:

Combined Subset Simulation and random field simulation on a
nonlinear finite element problem.
New methods for calculating the error bounds for Subset Simulation
reliability analysis. Can estimate error bounds from single analysis
(instead of multiple!).
Improved understanding of best choice of Markov Chain Monte Carlo
sampler for Subset Simulation.
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Subset Simulation example numerical analysis Problem description

Subset Simulation - Problem geometry and parameters

Existing problem chosen for benchmarking linear case

This problem was then extended to include a nonlinear, random field
material model

x (m)

y (m)

(0, 0)

(0, 30) (120, 30)

(120, 0)

10 m

q = 200 kPa

Mean(E) = 50 MPa, CoV(E) = 0.2, ν = 0.2.
Originally from: Sudret & Der Kiureghian (2002)

doi:10.1016/s0266-8920(02)00031-0
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Subset Simulation example numerical analysis Markov Chain Monte Carlo Comparison

Recent contributions - Better MCMC for Subset Simulation
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Linear problem. Shaded areas indicate 95% confidence intervals.
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Subset Simulation example numerical analysis Markov Chain Monte Carlo Comparison

Recent contributions - Better MCMC for Subset Simulation
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Subset Simulation example numerical analysis MCS vs Subset Simulation efficiency

Recent contributions - Better MCMC for Subset Simulation
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Subset Simulation outperforms Monte Carlo Simulation for rare event
simulation (but not for mean response estimation).
Metropolis-Hastings most efficient MCMC tested for nonlinear finite
element analysis test problem.
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Subset Simulation example numerical analysis MCS vs Subset Simulation efficiency

Conclusions

Ideal world: zero casualties from infrastructure failures

Research contributions

High performance, modern probabilistic numerical analysis

Improved techniques for random field simulation

More efficient rare event probability estimation techniques

Impacts

Practical and viable rare event simulation.

Moving towards risk based design in practice.

Improving design efficiency and safety.

Improved safety and efficiency for infrastructure are critical for the
provision and maintenance of high quality services

David K. E. Green (UNSW) Probabilistic analysis PGRS - 2016 18 / 19



Thank you!

User Data
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Left - random field simulation for slope stability problem from:
Green, Douglas and Mostyn (2015) - The simulation and discretisation of
random fields for probabilistic finite element analysis of soils using meshes
of arbitrary triangular elements, Computers and Geotechnics -
doi:10.1016/j.compgeo.2015.04.004

Right - illustration of random material properties under a footing
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