
Markov Chain Monte Carlo for Rare Event Reliability
Analysis with Nonlinear Finite Elements

Uncertainty Quantification 2016 - MS75 Part II of II
Theory and Simulation of Failure Probabilities and Rare Events

David K. E. Green

School of Civil and Environmental Engineering
University of New South Wales



Introduction Topics

Overview

Question: Which MCMC methodology is most appropriate for
Subset Simulation when sampling is computationally expensive?

Test case: a footing on soil with a nonlinear material model

Contents:

Briefly: Why rare event estimation is important in Civil Engineering

Subset Simulation and Markov Chain Monte Carlo for FEM

Numerical problem description

Results and computational efficiency comparison
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Introduction Theory

Rare events: relevance and simulation challenges

Risk in Civil Engineering:

Unacceptable performance carries severe consequences. Loss of life and
large damage cost possible during failures. This necessitates that the
probability of unacceptable performance is small.

Rare event simulation for stochastic PDE based reliability analysis:

Series expansion methods Monte Carlo Simulation

- Faster than sampling for close to
mean responses.
- Poor accuracy far from mean.
- Nonlinear material models are a
challenge.

- Fixed convergence rate ( 1√
N

) with

number of simulations, N.
- Slow for far from mean response.
- Nonlinear material models only as

challenging in the deterministic case.
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Introduction Theory

Subset Simulation

Denote the threshold event of interest as T .

Decompose the probability of T occurring as a series of conditional
probabilities:

P(T ) = P(T1)
m−1∏
i

P(Ti+1|Ti )

where:
T1 ⊂ T2 ⊂ · · · ⊂ Tm = T

Estimate P(Ti+1|Ti ) by Markov Chain Monte Carlo.

If sampled value /∈ Ti , reject the sample and revert to previous sample
value.
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Introduction Theory

Markov Chain Monte Carlo for Subset Simulation

As in regular Monte Carlo, estimate probabilities by sample estimate. For
N FEM simulations:

P(Ti+1|Ti ) =
1

N

N∑
j=1

Ψ(uj)

where uj is solution to j-th FEM simulation and Ψ(uj) = 1 if uj has Ti+1

occur and Ψ(uj) = 0 otherwise.

Monte Carlo Simulation draws the next sample from the input distribution
independently of the previous sample.

Markov Chain Monte Carlo finds next sample by applying a transition
function to the current sample.
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Introduction Theory

Error estimation - stationary Markov Chains

Central Limit Theorem for MCS and stationary Markov Chains:

N
(
µ,
σ2

N

)
For stationary Markov Chains - MCMC mean estimate variance:

σ2 = Var [Ψ(u)] + 2
∞∑
k=1

Cov [Ψ(uj),Ψ(uj+k)]

Where Ψ(uj) indicates uj ∈ Ti+1. Let Ψ(u) represent Ψ(uj) for all j .

Subset Simulation product probability distribution:

fZ (z) =

∫ ∞
−∞

fY

(z
x

)
fX (x)

1

|x |dx

Can use this equation to numerically estimate confidence intervals.
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Introduction Theory

MCMC Sampling methodology summary

Metropolis-Hastings Ratio - Probability to update random walk sample

Acceptance ratio: α = P(new)
P(old) . Accept new sample with probability α.

Represent input sample as vector in RD

Metropolis-Hastings
(MH)

Gibbs Sampling

Componentwise-
Metropolis-Hastings

(CMH)

Update entire
vector

Use transition
function at
previous result

Accept new value
according to ratio

Update single
component

Update according
to marginal
distribution

Always accept
new value

Update single
component

Use transition
function at
previous result

Accept new value
according to ratio
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Introduction MCMC and nonlinear FEM

MCMC Sampler efficiency for FEM analysis

The Subset Simulation MCMC sampler efficiency will depend on:

Minimising number of FEM analyses. These are very
computationally expensive. For nonlinear FEM, the difference is more
pronounced than in linear FEM.

Ability to find new test locations quickly, i.e. transition
probabilities not too small.

Minimising the number of analyses conducted that do not meet
the minimum threshold level. Don’t want to jump too far from
current best location. A potential problem for Gibbs sampling, most
likely to jump closer to the mean response rather than further away.
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Introduction MCMC and nonlinear FEM

Expected behaviour during analysis

Will higher acceptance probability for Gibbs and CMH offset the
potentially faster mixing of MH?

MCS should become less efficient for small probabilities as the
convergence rate is fixed

Componentwise MCMC samplers should mix more slowly - more
simulations required to explore sample space

For computationally expensive sampling (i.e. nonlinear FEM),
minimising the number of analyses is the time critical part of analysis

MH sampler acceptance probability tends to zero for infinite
probabilistic vector size. This may reduce simulation efficiency
compared to Gibbs and CMH.

On the other hand, failure to jump to a new location has little
computational overhead, FEM equations do not have to be
re-evaluated.
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Numerical analysis Linear and nonlinear common problem description

Common problem geometry and parameters

x (m)

y (m)

(0, 0)

(0, 30) (120, 30)

(120, 0)

10 m

q = 200 kPa

Mesh - 80 elements.
Mean(E) = 50 MPa, CoV(E) = 0.2, ν = 0.2.

Originally from: Sudret & Der Kiureghian (2002)
doi:10.1016/s0266-8920(02)00031-0
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Numerical analysis Linear and nonlinear common problem description

Linear and nonlinear analysis

Reliability analysis problem

Find P(u > u0). u = vertical displacement at centre of footing.

Two Subset Simulation tests - linear and nonlinear FEM problem

Linear problem from: Sudret & Der Kiureghian (2002)
doi:10.1016/s0266-8920(02)00031-0

SSFEM results indicate P(u > ui0) ≈ 10−1P(u > ui−1
0 )

Nonlinear problem presented adds more complex constitutive model

Limit state values, u0

u1
0 = 60 mm

u2
0 = 80 mm

u3
0 = 100 mm

u4
0 = 120 mm

u5
0 = 150 mm
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Numerical analysis Linear elastic analysis

Linear elastic problem

To test performance and convergence, a large number of simulations were
carried out.

E random field, θx =∞, θy = 30 m. Normally distributed,
exponential decay correlation function.

MCS, SSFEM and Subset Simulation convergence results compared.

Subset Simulation - MH, Gibbs and CMH tested.

MCS - 1× 106 simulations.

Subset Simulation - 1× 105 per level. Number of simulations
calculated cumulatively.

For sampling methodologies: each linear analysis takes same amount
of time to solve on average. Number of runs is reasonable for time
comparison.
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Numerical analysis Linear elastic analysis

Convergence vs number FEM simulations
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X-axis all plots: Number of simulations, N. Scale = 1√
N
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Numerical analysis Linear elastic analysis

Convergence vs FEM simulations - P(u > u0 = 150 mm)

1.
0
×

1
04

2
.5
×

10
4

1
.0
×

10
5

2
.5
×

10
5

1
.0
×

10
6

0× 100

2× 10−5

4× 10−5

6× 10−5

8× 10−5

1× 10−4

P
ro
b
a
b
il
it
y
P(
u
>

15
0
m
m
)

Number of simulations, N. Scale = 1√
N

MCS - Mean

MCS - 95% Confidence Interval
MH - Mean

MH - 95% Confidence Interval
Gibbs - Mean

Gibbs - 95% Confidence Interval
CMH - Mean

CMH - 95% Confidence Interval

All converged to
similar values

MH Fastest
method tested
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Numerical analysis Linear elastic analysis

Summary results - linear elastic parameters

60 80 100 120 150
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SSFEM

MCS - 1× 105 total

MCS - 1× 106 per level

CMH - 1× 105 per level

Gibbs - 1× 105 per level

MH - 1× 105 per level

Shaded areas indicate 95% confidence intervals.
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Numerical analysis Linear elastic analysis

Elastic Problem - Discussion

SSFEM, MCS and Subset Simulation in reasonable agreement. All
techniques converged to similar values.

MCS convergence improved with number of runs as expected.
1× 106 FEM simulations required to estimate P(u > 150 mm)
reasonably well.

Subset Simulation much better than MCS for u0 = 120 and 150 mm.

MH best convergence performance, followed closely by Gibbs.

Oscillations in CMH mean prevented confidence interval convergence.

Confidence interval estimation technique effectively captures range of
possible values.
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Numerical analysis Nonlinear analysis

Nonlinear FEM problem - constitutive model

Linear elastic region

Yield stress - σy

τ = σn tan(φ) + c

Hardenining region

Strain - ε

S
tr
es
s
-
σ

For the nonlinear analysis, a
Mohr-Coulomb constitutive
model was introduced.

E, φ and c - random fields
(Normally distributed).

All correlation lengths set to
θx = 10 m, θy = 30 m.

Very small hardening
parameter, ψ, included.
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Numerical analysis Nonlinear analysis

Nonlinear FEM - problem description

To match a more realistic analysis, the following analyses were carried out:

For P(u > u0 = 60 mm), MCS run until 1% relative error.

For all other Subset Levels, 1× 105 MCMC simulations carried out.

MH, CMH and Gibbs sampling tested.

To verify, the MCMC analysis 1× 106 MCS simulations were run.

The convergence rate and efficiency of each method was compared.
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Numerical analysis Nonlinear analysis

Convergence vs number FEM simulations
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X-axis all plots: Number of simulations, N. Scale = 1√
N

MCS relative error of 1% found after approximately 1.2× 105 simulations.
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Numerical analysis Nonlinear analysis

CMH - poor estimate for u0 = 100 mm recovery

MCS - Mean MCS - 95% Confidence Interval

MH - Mean MH - 95% Confidence Interval

Gibbs - Mean Gibbs - 95% Confidence Interval

CMH - Mean CMH - 95% Confidence Interval
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X-axis all plots: Number of simulations, N. Scale = 1√
N
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Numerical analysis Nonlinear analysis

Nonlinear analysis - trace plots

As in the elastic case, all values converged to similar estimates.

For u0 = 120 and 150 mm:

P(u > 120 mm) ≈ 10−5

P(u > 150 mm) ≈ 10−6

MCS would require millions of runs for accurate estimates for
P(u > 150 mm) and u0 > 150 mm.

CMH, again, displayed slower mixing than other MCMC methods.
Long period spent below threshold, long period spent above threshold.

Subset Simulation able to recover from earlier poor estimates.

Confidence intervals critical for understanding mean estimates.
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Numerical analysis Nonlinear analysis

Summary results - nonlinear parameters
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MCS - 1× 105 total

MCS - 1× 106 per level

CMH - 1× 105 per level

Gibbs - 1× 105 per level

MH - 1× 105 per level

Shaded areas indicate 95% confidence intervals.
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Numerical analysis Simulation efficiency

Nonlinear analysis - efficiency estimates

Simulation technique efficiency compared by:

Relative computational cost estimate

Computational Cost = (Run time)× (95% C.I. Rel. Err.)

Time normalised by setting time for 1× 105 by MCS simulations to 1
unit

Relative error taken as average 95% confidence interval width.

As all Subset Simulation analyses used the same P(u > 60 mm), the
MCMC efficiency could be compared.
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Numerical analysis Simulation efficiency

Nonlinear analysis - efficiency
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MCS - 1.2× 105 total

MCS - 5× 105 total

MCS - 1× 106 total

CMH - 1× 105 per level

Gibbs - 1× 105 per level

MH - 1× 105 per level
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Numerical analysis Simulation efficiency

Nonlinear analysis - efficiency

Monte Carlo Simulation:

More efficient closer to mean.

By u0 = 100 mm, efficiency becomes worse than Subset Simulation.

Subset Simulation - all methods started using same P(u > 60 mm):

CMH slow mixing degrades efficiency by preventing confidence
interval convergence.

Gibbs and MH very similar performance.

Further from mean response, MH begins to outperform Gibbs.

Analyses suggest that for further from mean responses, MH had best
performance.
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Numerical analysis Simulation efficiency

Nonlinear analysis - conclusions

Sampling efficiency observations and explanations:

Subset Simulation is more efficient than direct MCS far from the
mean.
Componentwise sampling reduces simulation efficiency.
Gibbs sampling - away from the mean, sampling from the full
marginal makes it more likely to sample below the minimum Subset
level threshold (than MH or CMH).
In contrast, MH sampling doesn’t jump far enough to fall below the
minimum threshold level as often.
For computationally expensive sampling, it is better to take more time
to find a good sample (by MH) than to take many poor samples
(CMH and Gibbs).

High dimensional acceptance probability problem in MH?

If acceptance probability becomes too small, update maximal batches of
probabilistic vector per iteration.
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Numerical analysis Simulation efficiency

Conclusions

For analyses conducted, Subset Simulation was effective for
estimating rare event, far from mean responses.

Metropolis-Hastings was best performing MCMC sampler.

Gibbs performance similar, but degraded further from mean.

Componentwise Metropolis-Hastings displayed oscillatory behaviour
around estimated value.

Confidence interval estimator worked well to capture range of
variations.
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Thank you!
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