
Model inference for Ordinary Differential
Equations by parametric polynomial kernel

regression

UNCECOMP 2019 - Crete, Greece

David K. E. Green
dgreen@turing.ac.uk

(Joint work with F. Rindler)

London, United Kingdom

Overview

ODE transition model Maximum Likelihood problem

d

dt
u(t) = f (t, u(t))

Find f given observations of u

Kernels for reducing Neural Network dimensionality

Finding ways to reduce the complexity of Neural Networks for
continuous model inference.

• Compute graph optimisation.

• Ordinary Differential Equation model inference.

• Parametric polynomial kernel regression.

• Numerical analysis of the Lorenz-Emanuel system.

1

Background on Compute Graphs

• Efficient optimisation for function representations.

• Complex nonlinearity by composition of simpler functions.

2

Computation graphs

• Computations can be represented as graphs

• Computations without recursion: directed acyclic graphs

a1

σ2(z2)

σ3(z3)

σ4(z4)

σ5(z5)

σ6(z6)

σ7(z7)

W12

W13

W24

W34

W35

W63
W56

W47

W57

W67

For all nodes with m parents, {vi}mi , in the compute graph:

Input to a node: zi =
m∑

vi

Wkiak

Output from a node: ai = σi (zi)

3

Training for directed compute graphs

Setup: Given training data samples: {(xi , f (xi))}Ni (input and
output) and some compute graph.
Hypothesis space parameterised by edge weights.
Approximate:

f̃W (x)
?
= f (x) for W ∈ Θ

Assign loss (or error) functional:

J(W) = ‖f (x)− f̃W (x)‖ so f̃ ∗W (x) = argmin
W∈Θ

J(W)

Train: Minimise J(W) over training samples, pairs {(xi , f (xi))Ni },
by gradient descent:

W ←W − α∇W J(W) for all (xi , f (xi))

Process: Hope that f̃ ∗W (x) is ok for predicting f (x) given new x .

4

Passing gradients through Directed Acyclic Graphs

• How to calculate ∇W J(W)?

• Can pass error gradients backward through a graph using the
chain rule. This is backpropagation.

• This calculates derivative of inputs (weights) with respect to
outputs (loss functions).

δi =
∂J

∂zi

δi =
N∑

j=1

δj
∂zj
∂ai

∂ai
∂zi

=
N∑

j=1

δjWijσ
′
i (zi)

∇W J(W) 3 ∂J

∂Wij
= δj

∂zj
∂Wij

= δjai

5

Model inference for ODEs

• Discretising ODEs for parametric inverse problems.

6

Continuous model inference

ODE transition model Maximum Likelihood problem

d

dt
u(t) = f (t, u(t))

Find f given observations of u.

Summary of technique:

• Discretise ODE integral/derivative representation.

• Represent f parametrically by fW .

• Use observations of u to find optimal parameters W .

7

Infer ODEs from data - Derivation 1/2

Convert to integral form and insert model fW (for W ∈ Θ):

d

dt
u(t) = fW (t, u(t))

ũ(t) = u(0) +

∫ t

0
fW (τ, u(τ))dτ

We want to solve for W :

Minimise J(W) =

∫ T

0

∣∣u(t)− ũ(t)|2dt

=

∫ T

0

∣∣∣∣u(t)−
(
u(0) +

∫ t

0
fW (τ, u(τ))dτ

)∣∣∣∣
2

dt

given observations of u(t).

8

Infer ODEs from data - Derivation 2/2

Average over the set of training data, observations (ti , u(ti)), to
approximate the loss functional:

J̃(W) =
1

N

N∑

i=1

∣∣∣∣u(ti)−
(
u(0) +

∫ ti

0
fW (τ, u(τ))dτ

)∣∣∣∣
2

Discretising the integral term gives an equation that can be solved.
For example, using Forward Euler:

J̃F (W) :=
1

N − 1

N−1∑

i=1

∣∣∣u(ti+1)− (u(ti) + |ti+1 − ti |fW (ti , u(ti))
∣∣∣
2

We show that for a differentiable representation of fW , J can be
minimised by Backpropagation and Stochastic Gradient Descent
(i.e. Artificial Neural Network training methods).

9

Parametric polynomial regression

• What compute graph architecture to use?

• Standard Neural Network activation functions perform poorly for
ODE inference tasks.

• Parametric polynomial kernels work well, but have poor
performance for time series inverse problems.

• Use a parametric polynomial kernel instead.

10

Nonparametric polynomial regression

Polynomial kernel:

K (x , y) = (〈x , y〉+ 1)d

implicitly represents all polynomial terms up to order d .

Given observations {(xi , f (xi))}Ni , f (x) can be approximated by:

f (x) ≈ fk(x) =
N∑

i=1

αiK (x , xi)

αi ∈ α = (K + λI)−1 f (x)

with K the matrix with entries Kij = K (xi , xj).

Problem: nonparametric approach grows with size of data set.
Not workable for time series data. Explicit polynomial expansion
has factorial explosion in number of degrees of freedom.

11

Parametric polynomial regression

Parametric polynomial kernel representation

fW (x) = W2

[
(W1x + B1) ◦d (W1x + B1)

]
+ B2

for matrices W1,W2 and vectors B1,B2 where ◦d is an elementwise
product (Hadamard product), repeated d times.

• Expand to intermediate dimension M with W1, then reduce back
down to dimension of fW (x) with W2.

• Differentiable, can use Gradient Descent and Backpropagation
(standard differentiable compute graph training).

• Expanding the above gives sets of polynomial equations similar to
the αK (x , xi) terms in the nonparametric polynomial estimator.

• Support vector machines meet Artificial Neural Networks. The
above technique is a cousin of radial basis function networks.

12

Simple numerical example

−3 −2 −1 0 1 2 3
−10

0

10

20

x

y

f(x) = (x− 1)(x+ 1)(x+ 0.5)
Parametric polynomial kernel n = 2
Parametric polynomial kernel n = 3
Parametric polynomial kernel n = 4
Multilayer Perceptron
Nonparametric polynomial kernel
Training data

Fit performance.

Comparison of parametric polynomial kernel method with standard
Artificial Neural Networks (multilayer perceptron) and polynomial
kernel ridge regression.

13

Simple numerical example

−4 −2 0 2 4
−100

−50

0

50

100

x

y

f(x) = (x− 1)(x+ 1)(x+ 0.5)
Parametric polynomial kernel n = 2
Parametric polynomial kernel n = 3
Parametric polynomial kernel n = 4
Multilayer Perceptron
Nonparametric polynomial kernel
Training data

Zoomed out view.

Comparison of parametric polynomial kernel method with standard
Artificial Neural Networks (multilayer perceptron) and polynomial
kernel ridge regression.

13

Simple numerical example

−5 −4 −3 −2 −1 0 1 2 3 4 5
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

x

lo
g
(r
el
at
iv
e
er
ro
r)
,
∣ ∣ ∣y

−
f
(x

)
f
(x

)

∣ ∣ ∣

Parametric polynomial kernel n = 2
Parametric polynomial kernel n = 3
Parametric polynomial kernel n = 4
Multilayer Perceptron
Nonparametric polynomial kernel

Fit errors.

Comparison of parametric polynomial kernel method with standard
Artificial Neural Networks (multilayer perceptron) and polynomial
kernel ridge regression.

13

Numerical example

• Chaotic dynamical system.

14

Test model: Lorenz-Emmanuel system

• Consider N variables, ui for 1 ≤ i ≤ N, arranged periodically s.t.
uN+1 = u1 and u0 = uN and u1 = uN−1.

• The Lorenz-Emmanuel system equation is given by:

dui
dt

= (ui+1 − ui−2) ui−1 − ui + F

for u := {ui}Ni=1 and F ∈ R.

15

Test model: Lorenz-Emmanuel system

Analysed case:

• F = 5, N = 8.

• Training data collected from a random initial condition,
u(t = 0) ∼ N (µ = 0, σ = 3), run for 20 time units, 1000 samples
per time unit.

• ODE discretisation for loss functional: Adams-Moulton Linear
Multistep (equations in the paper!).

16

Training data

17

Lorenz-Emmanuel System prediction

True Lorenz-Emmanuel system model (left) vs
model predicted from very few earlier observations (right).
Accurate over times longer much than data sampling rate.

18

Lorenz-Emmanuel System prediction

10−3 10−2 10−1 100 101
10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

log(Time), t

lo
g
(A

cc
u
m
u
la
te
d
er
ro
r)
,
ε(
t)

Polynomial features
Polynomial kernel, M = 60
Polynomial kernel, M = 80
Polynomial kernel, M = 100

Error comparison for polynomial kernel estimator. Note that
parametric polynomial kernel outperforms explicit second order

parametric polynomial feature representation. Previously unseen
initial condition.

19

Conclusions

• Short introduction to directed compute graphs

• Model inference for ODEs - discretisation to generate inverse
problem objective functions.

• Reducing problem dimensionality (and increasing accuracy) using
implicit polynomial representations (kernels).

• Standard extension to Bayesian regression analysis via Gibbs
measure:

P(W) ∝ exp
(
−‖J(W)‖2

)

20

Questions

Thank you!

21

Model recovery - derive optimisation objective

ODE transition model

d

dt
u(t) = f (t, u(t))

Option 1 - Fit uW (t) and differentiate to recover f (t, u(t))

J(W) = ‖uW (t)− u(t)‖

f (t, u(t)) =
d

dt
uW (t)

Option 2 - Fit fW (t, u(t)) by integrating to compare to u(t)

J(W) =

∣∣∣∣
∣∣∣∣
∫ t+h

t
fW (t, u(t))dt − u(t)

∣∣∣∣
∣∣∣∣

22

	Title
	Introduction
	Background on Compute Graphs
	Model inference for ODEs
	Parametric polynomial regression
	Numerical example
	Conclusions

