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ODE transition model Maximum Likelihood problem

d
Eu(t) = f(t, u(t))

Find f given observations of u

Kernels for reducing Neural Network dimensionality

Finding ways to reduce the complexity of Neural Networks for

continuous model inference.

Compute graph optimisation.

Ordinary Differential Equation model inference.

Parametric polynomial kernel regression.

Numerical analysis of the Lorenz-Emanuel system.



Background on Compute Graphs

e Efficient optimisation for function representations.

e Complex nonlinearity by composition of simpler functions.



Computation graphs

e Computations can be represented as graphs
e Computations without recursion: directed acyclic graphs
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For all nodes with m parents, {v; in the compute graph:
m

Input to a node: z; = Z Wiiak
vi

Output from a node: a; = 0j(z;)



Training for directed compute graphs

Setup: Given training data samples: {(x;, f(x;))}V

1
output) and some compute graph.
Hypothesis space parameterised by edge weights.
Approximate:

(input and

fw (x) z f(x) for We®©
Assign loss (or error) functional:

J(W) =||f(x) — fW(X)H so f&‘v(x) = argmin J(W)
Weoe

Train: Minimise J(W) over training samples, pairs {(x;, f(x,)),N}
by gradient descent:

W« W — aVywJ(W) for all (x;, f(x))

Process: Hope that f;;(x) is ok for predicting f(x) given new x.



Passing gradients through Directed Acyclic Graphs

e How to calculate Vi J(W)?

e Can pass error gradients backward through a graph using the
chain rule. This is backpropagation.

e This calculates derivative of inputs (weights) with respect to
outputs (loss functions).
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Model inference for ODEs

e Discretising ODEs for parametric inverse problems.



Continuous model inference

ODE transition model Maximum Likelihood problem

el
au(t) = f(t, u(t))

Find f given observations of u.

Summary of technique:
e Discretise ODE integral /derivative representation.
e Represent f parametrically by fyy .

e Use observations of u to find optimal parameters W.



Infer ODEs from data - Derivation 1/2

Convert to integral form and insert model fy, (for W € ©):

S u(t) = fnlt,u(1)

i(t) = u(0) —i—/o fw (T, u(T))dr
We want to solve for W:
T
Minimise J(W) = /0 lu(t) — i(t)|*dt

:/OT

given observations of u(t).

2
dt

u(t) — <u(0) + /0 e u(T))dT)




Infer ODEs from data - Derivation 2/2

Average over the set of training data, observations (t;, u(t;)), to
approximate the loss functional:

= %,ﬁ; u(t;) — (u(O) + /Oti fw (T, U(T))dT)

Discretising the integral term gives an equation that can be solved.
For example, using Forward Euler:
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We show that for a differentiable representation of fi/, J can be
minimised by Backpropagation and Stochastic Gradient Descent
(i.e. Artificial Neural Network training methods).



Parametric polynomial regression

What compute graph architecture to use?

Standard Neural Network activation functions perform poorly for
ODE inference tasks.

Parametric polynomial kernels work well, but have poor
performance for time series inverse problems.

Use a parametric polynomial kernel instead.
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Nonparametric polynomial regression

Polynomial kernel:

K(x.y) = ({x,y) + 1)

implicitly represents all polynomial terms up to order d.

Given observations {(x;, f(x;))}V, f(x) can be approximated by:

N

f(x) =~ fi(x) = Za;K(X,Xi)
i=1

o € a= (K + )‘I)_l f(X)

with K the matrix with entries Kjj = K(x;, x;).

Problem: nonparametric approach grows with size of data set.
Not workable for time series data. Explicit polynomial expansion
has factorial explosion in number of degrees of freedom.
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Parametric polynomial regression

Parametric polynomial kernel representation

fn(x) = Wh [(Wlx +B1)o? (Wix + Bl)} +B,

d

for matrices Wi, W» and vectors B, B> where o9 is an elementwise

product (Hadamard product), repeated d times.

Expand to intermediate dimension M with W, then reduce back
down to dimension of fyy(x) with W,.

Differentiable, can use Gradient Descent and Backpropagation
(standard differentiable compute graph training).

Expanding the above gives sets of polynomial equations similar to
the aK(x, x;) terms in the nonparametric polynomial estimator.

Support vector machines meet Artificial Neural Networks. The
above technique is a cousin of radial basis function networks.

12



Simple numerical example

— f(z) = (z—1)(z+ 1)(z + 0.5)

- - - Parametric polynomial kernel n = 2

—— Parametric polynomial kernel n =3

----- Parametric polynomial kernel n =4

—— Multilayer Perceptron

--------- Nonparametric polynomial kernel
& Training data

Fit performance.

Comparison of parametric polynomial kernel method with standard
Artificial Neural Networks (multilayer perceptron) and polynomial
kernel ridge regression.
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Simple numerical example
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Zoomed out view.

Comparison of parametric polynomial kernel method with standard
Artificial Neural Networks (multilayer perceptron) and polynomial

kernel ridge regression. s



Simple numerical example
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Comparison of parametric polynomial kernel method with standard
Artificial Neural Networks (multilayer perceptron) and polynomial

kernel ridge regression. s



Numerical example

e Chaotic dynamical system.
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Test model: Lorenz-Emmanuel system

e Consider N variables, u; for 1 </ < N, arranged periodically s.t.
un+1 = U1 and up = uy and up = uy-1.

e The Lorenz-Emmanuel system equation is given by:

du;
d_tl = (Uit1 — Uj—2) uj—1 —u; + F

for u:={u;}", and F € R.
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Test model: Lorenz-Emmanuel system

Analysed case:
e F=5 N=28.
e Training data collected from a random initial condition,
u(t =0) ~ N(u=0,0 =3), run for 20 time units, 1000 samples
per time unit.

o ODE discretisation for loss functional: Adams-Moulton Linear
Multistep (equations in the paper!).
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Lorenz-Emmanuel System prediction
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True Lorenz-Emmanuel system model (left) vs
model predicted from very few earlier observations (right).
Accurate over times longer much than data sampling rate.
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Lorenz-Emmanuel System prediction
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—— Polynomial features

--------- Polynomial kernel, M = 60
----Polynomial kernel, M = 80
-----Polynomial kernel, M = 100
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Error comparison for polynomial kernel estimator. Note that
parametric polynomial kernel outperforms explicit second order
parametric polynomial feature representation. Previously unseen

initial condition.
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Conclusions

e Short introduction to directed compute graphs

e Model inference for ODEs - discretisation to generate inverse
problem objective functions.

e Reducing problem dimensionality (and increasing accuracy) using
implicit polynomial representations (kernels).

e Standard extension to Bayesian regression analysis via Gibbs
measure:

P(W) o< exp (—[[J(W)]1?)
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Thank youl!
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Model recovery - derive optimisation objective

ODE transition model
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