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Overview

ODE transition model Maximum Likelihood problem

d

dt
u(t) = f (t, u(t))

Find f given observations of u

Kernels for reducing Neural Network dimensionality

Finding ways to reduce the complexity of Neural Networks for
continuous model inference.

• Compute graph optimisation.

• Ordinary Differential Equation model inference.

• Parametric polynomial kernel regression.

• Numerical analysis of the Lorenz-Emanuel system.
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Background on Compute Graphs

• Efficient optimisation for function representations.

• Complex nonlinearity by composition of simpler functions.
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Computation graphs

• Computations can be represented as graphs

• Computations without recursion: directed acyclic graphs
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For all nodes with m parents, {vi}mi , in the compute graph:

Input to a node: zi =
m∑

vi

Wkiak

Output from a node: ai = σi (zi )
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Training for directed compute graphs

Setup: Given training data samples: {(xi , f (xi ))}Ni (input and
output) and some compute graph.
Hypothesis space parameterised by edge weights.
Approximate:

f̃W (x)
?
= f (x) for W ∈ Θ

Assign loss (or error) functional:

J(W ) = ‖f (x)− f̃W (x)‖ so f̃ ∗W (x) = argmin
W∈Θ

J(W )

Train: Minimise J(W ) over training samples, pairs {(xi , f (xi ))Ni },
by gradient descent:

W ←W − α∇W J(W ) for all (xi , f (xi ))

Process: Hope that f̃ ∗W (x) is ok for predicting f (x) given new x .

4



Passing gradients through Directed Acyclic Graphs

• How to calculate ∇W J(W )?

• Can pass error gradients backward through a graph using the
chain rule. This is backpropagation.

• This calculates derivative of inputs (weights) with respect to
outputs (loss functions).

δi =
∂J

∂zi
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N∑

j=1

δj
∂zj
∂ai
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N∑
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δjWijσ
′
i (zi )

∇W J(W ) 3 ∂J

∂Wij
= δj

∂zj
∂Wij

= δjai
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Model inference for ODEs

• Discretising ODEs for parametric inverse problems.
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Continuous model inference

ODE transition model Maximum Likelihood problem

d

dt
u(t) = f (t, u(t))

Find f given observations of u.

Summary of technique:

• Discretise ODE integral/derivative representation.

• Represent f parametrically by fW .

• Use observations of u to find optimal parameters W .
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Infer ODEs from data - Derivation 1/2

Convert to integral form and insert model fW (for W ∈ Θ):

d

dt
u(t) = fW (t, u(t))

ũ(t) = u(0) +

∫ t

0
fW (τ, u(τ))dτ

We want to solve for W :

Minimise J(W ) =

∫ T

0

∣∣u(t)− ũ(t)|2dt

=

∫ T

0

∣∣∣∣u(t)−
(
u(0) +

∫ t

0
fW (τ, u(τ))dτ

)∣∣∣∣
2

dt

given observations of u(t).
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Infer ODEs from data - Derivation 2/2

Average over the set of training data, observations (ti , u(ti )), to
approximate the loss functional:

J̃(W ) =
1

N

N∑

i=1

∣∣∣∣u(ti )−
(
u(0) +

∫ ti

0
fW (τ, u(τ))dτ

)∣∣∣∣
2

Discretising the integral term gives an equation that can be solved.
For example, using Forward Euler:

J̃F (W ) :=
1

N − 1

N−1∑

i=1

∣∣∣u(ti+1)− (u(ti ) + |ti+1 − ti |fW (ti , u(ti ))
∣∣∣
2

We show that for a differentiable representation of fW , J can be
minimised by Backpropagation and Stochastic Gradient Descent
(i.e. Artificial Neural Network training methods).
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Parametric polynomial regression

• What compute graph architecture to use?

• Standard Neural Network activation functions perform poorly for
ODE inference tasks.

• Parametric polynomial kernels work well, but have poor
performance for time series inverse problems.

• Use a parametric polynomial kernel instead.
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Nonparametric polynomial regression

Polynomial kernel:

K (x , y) = (〈x , y〉+ 1)d

implicitly represents all polynomial terms up to order d .

Given observations {(xi , f (xi ))}Ni , f (x) can be approximated by:

f (x) ≈ fk(x) =
N∑

i=1

αiK (x , xi )

αi ∈ α = (K + λI )−1 f (x)

with K the matrix with entries Kij = K (xi , xj).

Problem: nonparametric approach grows with size of data set.
Not workable for time series data. Explicit polynomial expansion
has factorial explosion in number of degrees of freedom.
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Parametric polynomial regression

Parametric polynomial kernel representation

fW (x) = W2

[
(W1x + B1) ◦d (W1x + B1)

]
+ B2

for matrices W1,W2 and vectors B1,B2 where ◦d is an elementwise
product (Hadamard product), repeated d times.

• Expand to intermediate dimension M with W1, then reduce back
down to dimension of fW (x) with W2.

• Differentiable, can use Gradient Descent and Backpropagation
(standard differentiable compute graph training).

• Expanding the above gives sets of polynomial equations similar to
the αK (x , xi ) terms in the nonparametric polynomial estimator.

• Support vector machines meet Artificial Neural Networks. The
above technique is a cousin of radial basis function networks.
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Simple numerical example
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Nonparametric polynomial kernel
Training data

Fit performance.

Comparison of parametric polynomial kernel method with standard
Artificial Neural Networks (multilayer perceptron) and polynomial
kernel ridge regression.
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Simple numerical example
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Zoomed out view.

Comparison of parametric polynomial kernel method with standard
Artificial Neural Networks (multilayer perceptron) and polynomial
kernel ridge regression.
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Simple numerical example
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Fit errors.

Comparison of parametric polynomial kernel method with standard
Artificial Neural Networks (multilayer perceptron) and polynomial
kernel ridge regression.
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Numerical example

• Chaotic dynamical system.
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Test model: Lorenz-Emmanuel system

• Consider N variables, ui for 1 ≤ i ≤ N, arranged periodically s.t.
uN+1 = u1 and u0 = uN and u1 = uN−1.

• The Lorenz-Emmanuel system equation is given by:

dui
dt

= (ui+1 − ui−2) ui−1 − ui + F

for u := {ui}Ni=1 and F ∈ R.
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Test model: Lorenz-Emmanuel system

Analysed case:

• F = 5, N = 8.

• Training data collected from a random initial condition,
u(t = 0) ∼ N (µ = 0, σ = 3), run for 20 time units, 1000 samples
per time unit.

• ODE discretisation for loss functional: Adams-Moulton Linear
Multistep (equations in the paper!).
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Training data
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Lorenz-Emmanuel System prediction

True Lorenz-Emmanuel system model (left) vs
model predicted from very few earlier observations (right).
Accurate over times longer much than data sampling rate.
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Lorenz-Emmanuel System prediction
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Polynomial features
Polynomial kernel, M = 60
Polynomial kernel, M = 80
Polynomial kernel, M = 100

Error comparison for polynomial kernel estimator. Note that
parametric polynomial kernel outperforms explicit second order

parametric polynomial feature representation. Previously unseen
initial condition.
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Conclusions

• Short introduction to directed compute graphs

• Model inference for ODEs - discretisation to generate inverse
problem objective functions.

• Reducing problem dimensionality (and increasing accuracy) using
implicit polynomial representations (kernels).

• Standard extension to Bayesian regression analysis via Gibbs
measure:

P(W ) ∝ exp
(
−‖J(W )‖2

)
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Questions

Thank you!
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Model recovery - derive optimisation objective

ODE transition model

d

dt
u(t) = f (t, u(t))

Option 1 - Fit uW (t) and differentiate to recover f (t, u(t))

J(W ) = ‖uW (t)− u(t)‖

f (t, u(t)) =
d

dt
uW (t)

Option 2 - Fit fW (t, u(t)) by integrating to compare to u(t)

J(W ) =

∣∣∣∣
∣∣∣∣
∫ t+h

t
fW (t, u(t))dt − u(t)

∣∣∣∣
∣∣∣∣
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