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ATI Project Goals: Estimating System Health from
Streaming Sensor Data

• Quantify engineering system performance from data
• Predicting the behaviour of engineering systems
• Use sensor data to estimate preventative maintenance schedules
• AI driven reliability analysis
• Metastability based time to failure analysis
• Multidisciplinary: mathematics, statistics, computer science,

engineering, electronics, physics
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ML and Engineering: How to bridge the gap?

Engineering:

• Increasing data volume (sensors are
cheaper).

• Increased data speed (improved
sensor networking).

• Consequences of severe failures
increasing (JIT economy,
population density).

Application risk profile: High
failure consequence requires low
failure rate.

Machine learning:

• Deep Neural Networks for function
approximation.

• Data processing capabilities
improving.

• Ability to deal with very high
dimensional spaces and large data
sets.

Application risk profile: Low
failure consequence tolerates high
failure rate.

Challenge: bridging the gap while managing risk. Applying new
techniques to high consequence fields.
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Overview

• Preliminaries - machine learning and uncertainty quantification

• Model Inference

• Background on Neural Networks

• Model inference for ODEs

• High dimensional numerical example

• What’s wrong with ‘deep learning’?

• Pathfinding and metaheuristics
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Preliminaries - ML and UQ

4



Uncertainty Quantification - Typical forward problem

asdasdasd

Deterministic
Mechanical Model

Uncertain Inputs:

Loads
Material Properties
Geometry
Boundary Conditions

Probabilistic
Mechanical

Model

Reliability Methods

Pf =?

Reponse
Variability Methods

σ =?

µ =?

Response
PDF Methods

Acceptable
Risk Analysis

Let risk = prob-
ability of failure
× consequence.

Compare risk with
other accepted risks.
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Standard Uncertainty Quantification formulation

Consider a model, y = f (x), with inputs, X , and outputs, Y .

Uncertainty in inputs and outputs is modelled by probability mea-
sures over X and Y .

Forward problem (model output uncertainty)

P(Y ) =

∫

X
P(y |x)P(x)dx =

∫

Y
P(x = f −1(y))dy

Inverse problem (inference of model parameters from data)

P(X ) =

∫

Y
P(x |y)P(y)dy =

∫

X
P(y = f (x))dx
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Machine Learning Models vs Uncertainty Quantification

Given:

Inputs - x and (for classification tasks) labels - y

Generative models:

Build model P(x , y).
Use Bayes rule to calculate P(y |x) and/or find maximum
likelihood y .

Descriminative models:

Learn P(y |x) directly.
Equivalent - learn map y = f (x).

Unsupervised learning:

Learn P(x) given observations of x
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Model Inference
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Types of models

Differential
equations

Parametric
functions

Input-output
programs

Why?

• Attempt to predict future behaviour based on past data.

• Required for system health prediction.

• Purely statistical time series analysis methods interpolate well but
perform poorly performance beyond observed data.

• Done well: ability to extrapolate beyond previously observed
scenarios (think Newton’s equations, or continuum mechanics)
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Model inference in continuous spaces

• ODEs are helpful (continuous recurrence relation).

• Can wrap deterministic techniques in probabilistic techniques
(e.g. Bayesian linear regression). Must first deal with the
Maximum Likelihood problem.

ODE transition model Maximum Likelihood problem

d

dt
u(t) = f (t, u(t))

Find f given observations of u
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Model recovery

ODE transition model

d

dt
u(t) = f (t, u(t))

Option 1 - Fit uθ(t) and differentiate to recover f (t, u(t))

J(θ) = ‖uθ(t)− u(t)‖

f (t, u(t)) =
d

dt
uθ(t)

Option 2 - Fit fθ(t, u(t)) by integrating to compare to u(t)

J(θ) =

∣∣∣∣
∣∣∣∣
∫ t+h

t
fθ(t, u(t))dt − u(t)

∣∣∣∣
∣∣∣∣
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Background on Compute Graphs
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Computation graphs

• Computations can be represented as graphs

• Computations without recursion: directed acyclic graphs

Image source: tinyurl.com/ney26hz

c = a + b

d = b + 1

e = c ∗ d
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Information flows - Feedforward and Recurrent nets

For ai ∈ Rn and wi ∈ Rn×m:

a0 = x

ai+1
j = σi (wjka

i
k)

hθ(x) = aN

From layer to layer: Multiply input vector by weight matrix. Apply
function σ(◦) to output vector.

i

j

k
w1

ij w2
jk

Layer 1 Layer 2 Layer 3

Feedforward architecture

i

h

v

wih

whh

whv

Recurrent architecture
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Neural Networks - activation functions

Image Source: tinyurl.com/yc6wo6gr
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Neural Networks - different architectures

• NNs are graphs with information flows

• http://www.asimovinstitute.org/neural-network-zoo/

• A small sample from the full set!
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Neural Networks - Training for directed graphs

Setup: Given training data samples: (x , y) (input and output).
Hypothesis space parameterised by Neural Network weights:

hθ(x) = y for θ ∈ Θ

Assign loss (or error) functional:

J(θ) = ‖y − hθ(x)‖ so h∗θ(x) = argmin
θ∈Θ

J(θ)

Train: Minimise J(θ) by gradient descent over the training
samples:

θ ← θ − α∇θJ(θ) for all (x , y)

Process: Hope that h∗θ(x̂) is ok for predicting ŷ given x̂ .
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Neural Networks - Minimising J(θ)

Image source: tinyurl.com/y8j9gxof
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Passing gradients through Directed Acyclic Graphs

• Example from: tinyurl.com/ney26hz

• How to calculate ∇θJ(θ)?

• Can pass error gradients backward through a graph using the
chain rule. This is backpropagation.

• This calculates derivative of inputs (weights) with respect to
outputs (loss functions).

Need to calculate derivative
of e at all nodes.

c = a + b

d = b + 1

e = c ∗ d
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Backpropagation through ODEs
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Continuous model inference

ODE transition model

d

dt
u(t) = f (t, u(t))

Fit fθ(t, u(t)) by integrating to compare to u(t)

J(θ) =

∣∣∣∣
∣∣∣∣
∫ t+h

t
fθ(t, u(t))dt − u(t)

∣∣∣∣
∣∣∣∣

• Technique developed for the System Health research program.
• Extends on discrete backpropagation through time technique for

Recurrent Neural Networks. Developed by many e.g. Werbos
1988 doi:10.1016/0893-6080(88)90007-x..
• Relies on recent developments in gradient descent optimisers e.g.

ADAM by Kingma 2014 https://arxiv.org/abs/1412.6980.
21
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Analogue circuit representation of an oscillator ODE

g1

g2
...
gn

∑n
i gi

(a) Summer

g(t)
∫
g(t)dt + C

(b) Integrator

g(t)
g(t)

(c) Function generator

g(t)

γ(u̇)

k(u)

ü u̇ u

C0 C1

d

dt
u̇(t) = k(u(t))− γ(u̇(t)) + g(t)
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Loop unrolling: backprop through time

Backpropagation: A particular way of using the chain rule to
compute ∇θJ(θ). Ok as long as the network graph has no loops.

• Recurrent Neural Network: Representation of a discrete
recurrence relation:

u(t + h) = h(u(t))

• Can backprop through recurrent functions by unrolling the loop to
a finite order.
• This gives a directed acyclic computation graph approximation of

the recursive network function.

Image source: tinyurl.com/yaewmrvj 23
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Example - Unforced double well potential damped oscillator

ODE Equation

d

dt
u̇(t) = k(u)− γu̇

kθ(u) =
4∑

i=0

θiu
i

Given Observations u(t)

Task Recover kθ(u) and
parameter γ for
θi , γ ∈ R.

−2 −1 0 1 2

11

12

13

14

15

Oscillator position u

P
ot
en
ti
al

E
n
er
g
y
k
(u
)

Potential Energy
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Forward Euler example

• Define ui := u(t0 + ih)

• Integrate and approximate:
∫ t+h

t

d

dt
u̇(t)dt =

∫ t+h

t
kθ(u(t))− γu̇(t)dt

ui+1 − ui =

∫ t+h

t
kθ(u(t))− γu̇(t)dt

ui+1 − ui ≈ h (kθ(ui )− γu̇i )
• Prepare loss functional:

J(θ) =

∣∣∣∣
∣∣∣∣ (ui+1 − ui )− (h (kθ(ui )− γu̇i ))

∣∣∣∣
∣∣∣∣

• Minimise J(θ) with SGD and recover θi and γ.

• Use recovered parameters to predict future behaviour.

• Try different integration techniques. Extension to linear multistep
methods easy given evenly spaced data...
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Training data
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u(t)

u̇(t)
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One dimensional exmaple - learnt vs true

0 20 40 60 80 100

−2

−1

0

1

2

Time, t

u
(t
)

True
Trapezoidal
Forward Euler

Extrapolated data for this example. Try doing this with ARMA...

Trapezoidal integrator: Forward Euler predictor with average of
Forward and Backward Euler corrector. 27



High dimensional example
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High dimensional chaotic system - training data

Training data for a system (polynomial in the 100 degrees of
freedom) with unknown (and randomised) coefficients.
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High dimensional chaotic system - prediction

True

Predicted
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High dimensional chaotic system - prediction

True

Prediction absolute error

30



Lorenz-Emmanuel System (Very chaotic!)

ODE to learn

ẋi = A (xi+1 + xi+2) xi−1 − Bxi + F

Recovered: Coefficients Ajk ,Bj ,F

102 103 104
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Σ

First order Second order Third order

• Effect of integral estimator
order and training data sampling
rate on approximation error.

• Explicit Adams-Bashforth linear
multistep integrators used.

• Sampling rate only helps up to
a point!
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Discussion on the numerical examples

What works: Can easily recovery polynomial coefficients by
backpropagation through integration techniques when system
is known.

Nonstationarity: A real problem for systems that degrade over
time or subject to random forcing. How to deal with this
nonstationarity? (Easy with repeated measurements of the
same system, hard otherwise!)

Issue: Computational complexity of high dimensional, high order
polynomials. State space explosion. Cannot simply fit all
polynomials up to some order for high dimensional problems.

Search heuristics: How to choose what polynomials to test?
What if you have very little a priori information on the model?
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What’s wrong with ‘deep learning’?
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Data driven methods

Why not try deep learning techniques? (Spoiler: doesn’t work)

Standard: Use huge parameter space to avoid local minima.

Image Source: tinyurl.com/ycoomwnz Image Source: tinyurl.com/y8j9gxof
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What does a parametric model really predict?

Bayes rule - probability of the choice θ

P(θ|D) ∝ P(D|θ)P(θ)

Posterior predictive probability

P(h|x) =

∫

θ
P(h|x , θ)P(θ|D)dθ

J(θ) of a model is related to P(hθ|x) over D by:

P(D|θ) ∝ exp(−J(θ)) = exp (−‖hθ(x)− D‖)

Models predict measure valued functions described by the
distribution over their parameters

35



What does a parametric model really predict?

Models predict measure valued functions described by the
distribution over their parameters

• Bayesian regression - model
predicts a measure over the
function range.

• For models with many
parameters, P(hθ|x) will

• Can formulate more rigorously
in terms of cross entropy
minimisation between true
process p and model q:

H(q|p) = −
∑

x

p(x) log(q(x))

= H(p) + DKL(p‖q)

Image Source: tinyurl.com/ya22sdx4
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Measure of a good model - why large NNs are poor models

Continuous spaces Standard RNN formulation troublesome for
continuous models.

Convergence problems An LSTM RNN will not converge unless
there are a very large number of parameters.

Too many parameters Many local minima means model predicts
many equivalent descriptions.

Not good for engineering For reliability engineering, need to
predict states away from previously observed data points.

Occam’s Razor Model is too complicated!

Conclusion Gradient descent in a massive function space is an
ineffective model search technique.
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Metaheuristics in function spaces
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Pathfinding in function spaces - polynomial example

x y
W1

y = W1x = Ax

Function space search

Since we prefer simple
models, start simple.

Search space grows with
function complexity.

Represent functions as
graphs.

Allowed to insert a node
or add a link.

Assess quality of each
function by regression
loss after training
function weights.
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x y
W1

y = W1x = Ax

x y

x2

W2 W3

y = W3(W2x)
2 = Ax2
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x y
W1

y = W1x = Ax

x y

x2

W2 W3

y = W3(W2x)
2 = Ax2

x y

x2

W2 W3

W1

y = W1x+W3(W2x)
2 = Ax2 +Bx

x y

x2

x2

W4

W5

W3

y = W3(W5(W4)
2)2 = Ax4

Function space search
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models, start simple.

Search space grows with
function complexity.

Represent functions as
graphs.

Allowed to insert a node
or add a link.

Assess quality of each
function by regression
loss after training
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Pathfinding in function spaces - polynomial example

y = Ax y = Ax2

y = Ax4 y = Ax2 +Bx

y = Ax6 y = Ax4 +Bx y = Ax4 +Bx2

y = Ax8 y = Ax4 +Bx2 + Cxy = Ax6 +Bx4 y = Ax6 +Bx2 y = Ax6 +Bx

Function space search

Since we prefer simple
models, start simple.

Search space grows with
function complexity.

Even in one dimension, state space explodes

Neural Network architecture search? Need to use some clever
heuristic to search in the right places. Only expand useful nodes.
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Pathfinding in function spaces - polynomial example

J(θ) = 0.9 J(θ) = 0.95

J(θ) = 0.8 J(θ) = 0.7

J(θ) = 0.98 J(θ) = 1.9 J(θ) = 0.3

J(θ) =? J(θ) =?J(θ) =? J(θ) =? J(θ) =?

Function space search

Since we prefer simple
models, start simple.

Search space grows with
function complexity.

Even in one dimension, state space explodes

Neural Network architecture search? Need to use some clever
heuristic to search in the right places. Only expand useful nodes.
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Pathfinding - understanding optimisation algorithms

Doesn’t look so bad?

Higher dimensional polynomial search blows up MUCH more
quickly (for n variables with maximum degree k):

(
n + k

k

)
=

(n + k)!

k!n!

If additional activation functions are used (as in Neural Networks),
state space branching factor is higher. Exponentially harder!
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Metaheuristic algorithms

Image Source: tinyurl.com/yc44bjoh

• Genetic algorithms:
Pathfinding based on
parent regression loss.

• Perturbative
approximations like sparse
Polynomial Chaos are just
another metaheuristic.

• Open ended spaces cause
Monte Carlo Tree Search
and Reinforcement
Learning to fail.

• AlphaZero only works
because certain games
have a finite search space.
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Conclusions
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Conclusions

Background on engineering, machine learning

Short introduction to directed compute graphs

Model inference for ODEs

Problems when searching for an unknown model

The need for new metaheuristics
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Questions

Thank you!
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Slide appendix
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System robustness and health

tinyurl.com/y6v4lcop

Energy decay

Need to consider how
energy surface changes
over time. Description of
P(st+1|st) fine, but
metastability analysis
depends on L...

Robustness Depth of
metastable basin.

Time to failure Time to hit
transition state.

Health Expected future value of
robustness and time to
failure.

Efficient descriptions Describe
system in terms of basins,
rather than all states (use
SVD/PCA/POD).

Utility Assign to basins, rather
than to all states.

Efficiency As a utility measure.
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Analogue circuit representation of an oscillator ODE

g1

g2
...
gn

∑n
i gi

(a) Summer

g(t)
∫
g(t)dt + C

(b) Integrator

g(t)
g(t)

(c) Function generator

g(t)

γ(u̇)

k(u)

ü u̇ u

C0 C1

d

dt
u(t) = k(u(t))− γ(u̇(t)) + f (t)
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Backprop through ODEs

• Replace integrators with numerical approximations
• ODE circuit is unrolled in time and over the integrators!

Forward Euler

ui+1 − ui =

∫ t+h

t
f (t, u(t))dt ui := u(t0 + ih)

ui+1 ≈ ui + hfi

g(t)

γ(u̇i)

k(ui)

üi u̇i+1 ui+1

u̇i ui

u̇i+1 ui+1

d

dt
u(t) = k(u(t))− γ(u̇(t)) + f (t)
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Optimal model encodings

A model, q should optimally encode the process, p, it is
describing

In terms of cross entropy:

H(q|p) = −
∑

x

p(x) log(q(x)) = H(p) + DKL(p‖q)

where:

H(p) = −∑x p(x) log p(x) is the entropy of p(x)

DKL(p‖q) = −∑x p(x) log q(x)
p(x) KL divergence of q from p

Image Source: tinyurl.com/y79y44dl
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Backprop is the chain rule

• Use the chain rule to calculate SGD derivatives ∇θJ(θ).

• Requires: ANN functions are differentiable

• Layered deep neural network structure has a convenient form for
backprop.

Layer l

al+1 = σl(a
l) δl+1 = ∂J

∂al+1

∂J
∂θ =

∑
j δ

l+1
j

∂al+1

∂θ

al δl =
∑
j δ

l+1
j

∂al+1

∂al
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